EFFECTS
Facilitation of motor learning after repetitive anodal stimulation; duration of effects: 3months.

SIDE EFFECTS
None reported.

Close

EFFECTS
A melioration of neuromuscular fatigue after anodal stimulation of the right motor cortex; increase in endurance time of elbow flexor muscles in a submaximal isometric task 1 h after baseline fatigue task.

SIDE EFFECTS
None reported.

Close

EFFECTS
Effects on cortical excitability (reduction of MEP size) during motor imagery by cathodal stimulation; duration of effects: 30min; no effects after anodal stimulation.

SIDE EFFECTS
None reported.

Close

EFFECTS
Increased excitability of the ipsilateral motor cortex after anodal stimulation of the left premotor cortex in comparison to cathodal tDCS and anodal tDCS of the DLPFC; duration of effects: 30min.

SIDE EFFECTS
None reported.

Close

EFFECTS
Anodal tDCS improved the performance of simple motor functions such as pinch force and reaction times in chronic stroke patients. The improvement was more pronounced in the more impaired patients.

SIDE EFFECTS
Slight tingling sensation under the electrodes.

Close

EFFECTS
Improvement of arm function in patients with paresis after stroke, when tDCS was combined with arm training, improvement of aphasia.

SIDE EFFECTS
Slight itching under electrodes and headache.

Close

EFFECTS
Wide spread increase and decrease in regional cerebral blood flow in cortical and subcortical areas of both hemispheres by anodal as well as cathodal stimulation; increase of rCBF after real tDCS (irrespective of polarity) in left M1, right frontal pole, right sensorimotor cortex, posterior brain regions; duration of effects: 50min (during the PET scan).

SIDE EFFECTS
None reported.

Close

EFFECTS
Increase in MEP size and in beta-band intermuscular coherence after anodal stimulation; decrease in the same parameter after cathodal stimulation; duration of effects: 5–10min, partially significant.

SIDE EFFECTS
None reported.

Close

EFFECTS
Anodal or cathodal tDCS leads to a motor improvement. Consecutive daily sessions but not weekly sessions were associated with a cumulative motor improvement that lasted for 2 weeks.

SIDE EFFECTS
None reported.

Close

EFFECTS
Improvement of naming in patients with chronic non-fluent aphasia by chatodal tDCS.

SIDE EFFECTS
None reported.

Close

EFFECTS
Enhancement of motor performance of the non-dominant hand after anodal stimulation of right M1.

SIDE EFFECTS
None reported.

Close

EFFECTS
Increase in the excitability of the leg corticospinal tract after anodal stimulation; duration of effects: 60 min.

SIDE EFFECTS
None reported.

Close

EFFECTS
Increase after anodal and decrease after cathodal stimulation of the left M1 in MEPs evoked from the same hemisphere. Duration effects: 40min. No changes in MEPs from right M1.
Effect on transcallosal inhibitiononly from right M1 (prolonged effect after anodal and shortened after cathodal tDCS).

SIDE EFFECTS
None reported.

Close

EFFECTS
Both cathodal stimulation of the unaffected hemisphere and anodal stimulation of the affected hemisphere improved motor performance.

SIDE EFFECTS
None reported.

Close

EFFECTS
Anodal tDCS improved the performance of a test mimicking activities of daily living with the paretic hand of chronic stroke patients.

SIDE EFFECTS
Slight tingling sensation under the electrodes.

Close

RISULTATI RIPORTATI NELLA LETTERATURA SCIENTIFICA

Negli studi riguardanti l’effetto della tDCS nella riabilitazione post-ictus generalmente vengono utilizzate due modalità di stimolazione.

Anodica: incrementando l’eccitabilità cerebrale nell’emisfero affetto dalla lesione.

Catodica: riducendo l’eccitabilità cerebrale nell’emisfero controlaterale.

Questi due effetti possono essere ottenuti simultaneamente, posizionando l’anodo sull’emisfero leso e il catodo sull’emisfero controlaterale, oppure selettivamente posizionando solo l’anodo o il catodo sullo scalpo ed utilizzando un riferimento extra-cefalico (spalla destra). In letterartura vi sono alcune evidenze che suggeriscono la tDCS come trattamento per facilitare il recupero funzionale: tale tecnica però non deve essere considerata sostitutiva rispetto ai trattamenti comunemente utilizzati durante la riabilitazione post-ictus bensì integrativa. Durante uno studio randomizzato (double-blinded) è stato rilevato che la stimolazione catodica (2 mA, 10 minuti ) della regione frontotemporale sinistra induce un miglioramento significativo nell’esecuzione di un task “picture-naming” in pazienti affetti da afasia cronica [Monti 2008]. Nel 2011 Bastani e Jaberzadeh hanno effettuato una review sistematica ed una meta-analisi riguardanti l’effetto della tDCS sull’attività della corteccia motoria in soggetti sani ed affetti da ictus. Questa meta-analisi ha dimostrato che a-tDCS può indurre incrementi statisticamente significativi sull’eccitabilità corticomotoria sia in soggetti sani sia in soggetti affetti da ictus.

Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, Vergari M, Zago S, Priori A: Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry 2008; 79:451-3.

Bastani A, Jaberzadeh S. Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: A systematic review and meta-analysis. Clin Neurophysiol 2012; 123(4): 644-57.

 

PROTOCOLLI UTILIZZATI NELLA LETTERATURA SCIENTIFICA

La tabella seguente riassume alcuni protocolli utilizzati nella letteratura scientifica (tutti i lavori sono estratti da PubMed). i protocolli sono classificati e ordinati in ordine decrescente secondo il numero di soggetti sottoposti alla tDCS. Per rappresentare tale classificazione è stata utilizzata una legenda a colori.

Legenda

1 ≤ numero di soggetti trattati ≤ 10
11 ≤ numero di soggetti trattati ≤ 20
numero di soggetti trattati ≥ 21


REFERENCE


STIMULATION ELECTRODE POSITION


REFERENCE ELECTRODE POSITION


POLARITY


ELECTRODE AREA
(cm2)


INTENSITY (mA)


CURRENT DENSITY (mA/cm2)


DURATION (min)


EFFECTS AND SIDE EFFECTS


HEALTHY SUBJECTS OR PATIENTS


NUMBER OF SUBJECTS

Reis et al. (2009)

Left M1

Contralateral supraorbital area

A/C/S

25 cm2

1

0.04

20 min (5 sessions)




Healthy subjects

36

Cogiamanian et al.(2007)

Right motor cortex

Right shoulder

A/C

35 cm2

1.5

0.043

10 min




Healthy subjects

24

Quartarone et al. (2004)

Electrode over the left M1: motor cortical representation field of the right first dorsal interosseous muscle. Revealed by TMS.

Contralateral orbita

A/C

35 cm2

1

0.029

5 min (3 sessions)




Healthy subjects

21

Boros et al. (2008)

Left premotor cortex (2.5 cm anterior to the left M1),the left DLPFC at F3

contralateral orbita

A/C

35 cm2

1

0.029

For anodal stimulation: 13 min.
For cathodal stimulation: for 9 min




Healthy subjects

17

Hummel et al. (2006)

M1, hand area of the affected hemisphere

Contralateral orbita

A/S

25 cm2

1

0.04

20 min




Stroke patients

11

Hesse et al. (2007)

C3/C4 of the affected hemisphere

Contralateral orbita

A

35 cm2

1.5

0.04

7 min




Stroke patients

10

Lang et al. (2005)

Left M1

Contralateral frontopolar cortex

A/C/S

35 cm2

1

0.029

10 min




Healthy subjects

10

Power et al. (2006)

Left motor cortex

Contralateral orbita

A/C/S

35 cm2

1

0.029

110 min (3 sessions)




Healthy subjects

10

Boggio et al. (2007)

M1 at C3/C4
(for anodal stimulation: anode over the M1 of the affected hemisphere;
for cathodal stimulation: cathode over the M1 of the unaffected hemisphere).

Contralateral supraorbital area

A/C/S

35 cm2

1

0.029

20 min (4 weekly sessions or 5 consecutive daily sessions)




Stroke patients

9

Monti et al. (2008)

Left fronto-temporal area

Right deltoid Muscle

A/C/S

35 cm2

2

0.057

110 min




right-handed chronic non-fluent aphasic patients

8

Boggio, Castro, et al.(2006)

Right/left M1 at C3/C4

Contralateral supraorbital area

A/S

35 cm2

1

0.029

220min ( 2 sessions)




Healthy subjects

8

Jeffery et al.(2007)

Left M1 (leg area)

Contralateral orbita

A/C/S

35 cm2

2

0.057

10 min (3 sessions)




Healthy subjects

8

Lang et al. (2004)

Left M1

Contralateral orbita

A/C

35 cm2

1

0.029

110 min ( 2 sessions )




Healthy subjects

8

Fregni et al. (2005)

M1 at C3/C4
(for anodal stimulation: anode over the M1 of the affected hemisphere;
for cathodal stimulation: cathode over the M1 of the unaffected hemisphere).

Contralateral orbit

A/C/S

35 cm2

1

0.029

220 min




Stroke patients

6

Hummel et al. (2005)

M1, hand area

Controlateral orbit

A/S

25 cm2

1

0.04

220 min




Patients with a history of a single ischaemic cerebral infarct

6

 

After-stroke rehabilitation Reference:

Boggio PS, Castro LO, Savagim EA, Braite R, Cruz VC, Rocha RR, et al. Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neuroscience Letters 2006; 404(1–2): 232–236.

Boggio PS, Nunes A, Rigonatti SP, et al. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci 2007;25: 123-129.

Boros K, Poreisz C, Munchau A, Paulus W, Nitsche MA. Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. European Journal of Neuroscience 2008; 27(5): 1292–1300.

Cogiamanian F, Marceglia S, Ardolino G, Barbieri S, Priori A. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. European Journal of Neuroscience 2007; 26(1): 242–249.

Fregni F, Boggio PS, Mansur CG, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 2005;16:1551-1555.

Hesse S, Werner C, Schonhardt EM, et al. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study. Restor Neurol Neurosci 2007;25:9-15.

Hummel F, Celnik P, Giraux P, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005; 128:490-499.

Hummel FC, Voller B, Celnik P, et al. Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci 2006;7:73.

Jeffery DT, Norton JA, Roy FD, Gorassini MA. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Experimental Brain Research 2007; 182(2): 281–287.

Lang N, Nitsche MA, Paulus W, Rothwell JC, Lemon RN(2004). Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Experimental Brain Research 2004; 156(4): 439–443.

Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W et al. How does transcranial DC stimulation of the primary motor cortex alter regionalneuronal activity in the human brain? European Journal of Neuroscience 2005; 22(2): 495–504.

Monti A, Cogiamanian F, Marceglia S, et al. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry 2008;79:451-453.

Power HA, Norton JA, Porter CL, Doyle Z, Hui I, Chan KM. Transcranial direct current stimulation of the primary motor cortex affects cortical drive to human musculature as assessed by intermuscular coherence. Journal of Physiology 2006; 577(Pt 3): 795–803.

Quartarone A, Morgante F, Bagnato S, Rizzo V, Sant’Angelo A, Aiello E, et al. Long lasting effects of transcranial direct current stimulation on motor imagery. Neuroreport 2004; 15(8): 1287–1291.

Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America 2009; 106(5): 1590–1595.

Schlaug G, Renga V, Nair D. Transcranial Direct Current Stimulation in Stroke Recovery. Arch Neurol. 2008; 65(12): 1571–1576.

* Questa raccolta bibliografica include una selezione di pubblicazioni estratta da PubMed. L’inclusione di questi lavori nella presente raccolta non impleca in alcun modo l’approvazione da parte di Newronika dei protocolli o dei risultati riportati in questi lavori.

** last issued: December 2015.